FIELD OF FRACTIONS

Every integral domain can be embedded in a field (see proof below). That is, using concepts
from set theory, given an arbitrary integral domain (such as the integers), one can construct
a field that contains a subset isomorphic to the integral domain. Such a field is called the
field of fractions of the given integral domain.

1. EXAMPLES

e The rational numbers (Q) is the field of fractions of the integers (Z);
e The Gaussian rational numbers (Q [i]) is the field of fractions of the integers (Z [i])

Theorem. FEvery integral domain can be embedded in a field.

Proof. Let R be an integral domain. That is, a commutative ring with unity in which the
zero-product rule holds. Now consider the set ' = R x R*, the set of all ordered pairs of
elements in R, excluding those in which the second element is 0.

We will now define a binary relation = on F', which we claim to be an equivalence relation
by the following criteria: (p,q) = (p,q), if and only if p- G =p - ¢, for all (p,q), (p,q) € F.

To show that = is an equivalence relation, we must show that the reflexive, symmetric, and
transitive properties hold. To that end, let (p,q), (p,q),(p,q) € F.

Reflexive

Since p-q=p-q, (p.q) = (p,9).

Symmetric

Suppose that (p,q) = (p, ). Then p-§ = p-q, and so by the symmetric property of equality,
p-q=p-q. Thus, (p,q) = (p,q).

Transitive

Now suppose that (p,q) = (p,q) and (p,q) = (p,q). Thenp-g=p-qandp-G=p-q
Multiplying these equations together, we obtain pgpq = pqpq. Thus, pgpg — pgpq = 0, and

so pq (pG — qp) = 0. Since ¢ # 0, we must have p (p§ — gp) = 0, as R has the zero-product
rule.

In the case that p # 0, we will have pg—qgp = 0, which implies p§ = pq and that (p, q) = (p, §)-
Otherwise, if p =0, then p-§ = 0-q = 0, which then implies that p = 0. Similarly, we will
also find that p = 0. This is the special case that p§ = 0 = pq, and so (p,q) = (p, ).

Thus, = is an equivalence relation, and so we will now define F = F/ = the set of all
equivalence classes, and use the notation § to denote the element [p, ¢, the equivalence class

containing (p, q).

We now must determine addition and multiplication operations on F' and show that F'is a

field. We claim that addition and multiplication can be given by:
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Since § and ¢ may not be unique representations of elements in F, it is necessary to show

that the above rules for addition and multiplication provide for well-defined operations.

To that end, let 2, 2, Z_and L be elements of F, and suppose that 2 = 2 and £ = L. We
q° q’ s S q q s S

will now show that 254" — PSHa" 554 P& — DT
qs qs qs qs

Since § = ’5:’ and % = g, we have p¢ = pq and r5 = s. Then:
(ps +qr) 45 = pss + qrgs
= pgss + qqrs
= Pqgss + qqrs
= (P8 +qr) gs

and

prqs = pqrs
= pqrs
= prqs
Therfore, B4 — PSHAE 5 Br — DF
qs qs qs qs
Now we must show that F'is a field. Take § and * as before, and 0 and 1 as the additive
and multiplicative identities in R. Also take = € F'. It should be noted that for any n € R*,
since (pn) ¢ =p(qn), & = L.

qn q
Additive identity
We claim that % is the additive identity in F. Observe that § + % = pl4g0 §~
Additive inverses
We claim that %p is the additive inverse of g. Observe that %’—I—_?p = patCpe) _ 0 _ 0 %

Commutativity of addition

Observe that §+§:%:%:§+§.
Associativity of addition

P _ P +su _ p(sv)tq(rvtsu) _ psvtgrotgsu _ (pstqrivt(gs)u
Observe that £ + (t+4) = ct S = 50) = Py = (asJo =
pstqr —_(p
T—F%— (E—FE)—F%.

Multiplicative identity

We claim that % is the multiplicative identity in F. Observe that § . % = ’;%1 =

QI3

Multiplicative inverses
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On the supposition that § %, we find that p # 0. We then claim that % is the multiplicative

inverse of 2. Observe that 2 -4 =24 — g _ 1
q q p qp 1pq 1

Commutativity of multiplication

Observe that 2.2 =2 =2 T .2
qg S qs sq s q

Associativity of multiplication

p.(r.uy_p. ru_pry) _ (pr)ju _pr uw_ (p r). u
Observethatq (s U)—q w = o) = (@) — o U_< s) -

Distributive property

p.(ru) — P, rutsu _ protpsu _ (protpsu)g _ (pr)(qu)+(gs)(pw) _ pr 4 pu _
Observe that ; (S + v) = = ErE o) =0+
p.r4 by
q s q v

qa  sv q(sv)
Now we are lett to identity a subset of /' that is ring-isomorphic to R. We claim that the
subset is R = {% ‘T E R} and the isomorphism is mapping ¢ : R — R, defined by ¢ (r) = 1,
or all r € R.

One-to-one

Let 7,5 € R and suppose that ¢ (r) = ¢ (s). Then { = {, andsor-1=1-s. Thus r = s.
Onto

Let - € R. Then ¢ (r) = *.

Preservation of structure

Let 7,5 € R. Then ¢ (r 4+ s) = == = % =r+1=0¢()+¢(s),and ¢(rs) =5 =5

s L6 (r) 6 (s). =



