
FIELD OF FRACTIONS

Every integral domain can be embedded in a �eld (see proof below). That is, using concepts
from set theory, given an arbitrary integral domain (such as the integers), one can construct
a �eld that contains a subset isomorphic to the integral domain. Such a �eld is called the
�eld of fractions of the given integral domain.

1. Examples

• The rational numbers (Q) is the �eld of fractions of the integers (Z);
• The Gaussian rational numbers (Q [i]) is the �eld of fractions of the integers (Z [i])

Theorem. Every integral domain can be embedded in a �eld.

Proof. Let R be an integral domain. That is, a commutative ring with unity in which the
zero-product rule holds. Now consider the set F̄ = R × R∗, the set of all ordered pairs of
elements in R, excluding those in which the second element is 0.

We will now de�ne a binary relation ∼= on F̄ , which we claim to be an equivalence relation
by the following criteria: (p, q) ∼= (p̂, q̂), if and only if p · q̂ = p̂ · q, for all (p, q) , (p̂, q̂) ∈ F̄ .
To show that ∼= is an equivalence relation, we must show that the re�exive, symmetric, and
transitive properties hold. To that end, let (p, q) , (p̂, q̂) , (p̃, q̃) ∈ F̄ .
Re�exive

Since p · q = p · q, (p, q) ∼= (p, q).

Symmetric

Suppose that (p, q) ∼= (p̂, q̂). Then p · q̂ = p̂ · q, and so by the symmetric property of equality,
p̂ · q = p · q̂. Thus, (p̂, q̂) ∼= (p, q).

Transitive

Now suppose that (p, q) ∼= (p̂, q̂) and (p̂, q̂) ∼= (p̃, q̃). Then p · q̂ = p̂ · q and p̂ · q̃ = p̃ · q̂.
Multiplying these equations together, we obtain pq̂p̂q̃ = p̂qp̃q̂. Thus, pq̂p̂q̃ − p̂qp̃q̂ = 0, and
so p̂q̂ (pq̃ − qp̃) = 0. Since q̂ 6= 0, we must have p̂ (pq̃ − qp̃) = 0, as R has the zero-product
rule.

In the case that p̂ 6= 0, we will have pq̃−qp̃ = 0, which implies pq̃ = p̃q and that (p, q) ∼= (p̃, q̃).

Otherwise, if p̂ = 0, then p · q̂ = 0 · q = 0, which then implies that p = 0. Similarly, we will
also �nd that p̃ = 0. This is the special case that pq̃ = 0 = p̃q, and so (p, q) ∼= (p̃, q̃).

Thus, ∼= is an equivalence relation, and so we will now de�ne F = F̄ / ∼=, the set of all
equivalence classes, and use the notation p

q
to denote the element [p, q], the equivalence class

containing (p, q).

We now must determine addition and multiplication operations on F and show that F is a
�eld. We claim that addition and multiplication can be given by:
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• p
q

+ r
s

= ps+qr
qs

, for all p
q
, r

s
∈ F ;

• p
q
· r

s
= pr

qs
, for all p

q
, r

s
∈ F ;

Since p
q
and r

s
may not be unique representations of elements in F , it is necessary to show

that the above rules for addition and multiplication provide for well-de�ned operations.

To that end, let p
q
, p̂

q̂
, r

s
, and r̂

ŝ
be elements of F , and suppose that p

q
= p̂

q̂
and r

s
= r̂

ŝ
. We

will now show that ps+qr
qs

= p̂ŝ+q̂r̂
q̂ŝ

and pr
qs

= p̂r̂
q̂ŝ
.

Since p
q

= p̂
q̂
and r

s
= r̂

ŝ
, we have pq̂ = p̂q and rŝ = r̂s. Then:

(ps+ qr) q̂ŝ = psq̂ŝ+ qrq̂ŝ

= pq̂sŝ+ qq̂rŝ

= p̂qsŝ+ qq̂r̂s

= (p̂ŝ+ q̂r̂) qs

and

prq̂ŝ = pq̂rŝ

= p̂qr̂s

= p̂r̂qs

Therfore, ps+qr
qs

= p̂ŝ+q̂r̂
q̂ŝ

and pr
qs

= p̂r̂
q̂ŝ
.

Now we must show that F is a �eld. Take p
q
and r

s
as before, and 0 and 1 as the additive

and multiplicative identities in R. Also take u
v
∈ F . It should be noted that for any n ∈ R∗,

since (pn) q = p (qn), pn
qn

= p
q
.

Additive identity

We claim that 0
1
is the additive identity in F . Observe that p

q
+ 0

1
= p·1+q·0

q·1 = p
q
.

Additive inverses

We claim that −p
q
is the additive inverse of p

q
. Observe that p

q
+ −p

q
= pq+(−pq)

qq
= 0

q2 = 0q2

1q2 = 0
1
.

Commutativity of addition

Observe that p
q

+ r
s

= ps+qr
qs

= rq+sp
sq

= r
s

+ p
q
.

Associativity of addition

Observe that p
q

+
(

r
s

+ u
v

)
= p

q
+ rv+su

sv
= p(sv)+q(rv+su)

q(sv)
= psv+qrv+qsu

qsv
= (ps+qr)v+(qs)u

(qs)v
=

ps+qr
qs

+ u
v

=
(

p
q

+ r
s

)
+ u

v
.

Multiplicative identity

We claim that 1
1
is the multiplicative identity in F . Observe that p

q
· 1

1
= p·1

q·1 = p
q
.

Multiplicative inverses
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On the supposition that p
q
6= 0

1
, we �nd that p 6= 0. We then claim that q

p
is the multiplicative

inverse of p
q
. Observe that p

q
· q

p
= pq

qp
= 1pq

1pq
= 1

1
.

Commutativity of multiplication

Observe that p
q
· r

s
= pr

qs
= rp

sq
= r

s
· p

q
.

Associativity of multiplication

Observe that p
q
·
(

r
s
· u

v

)
= p

q
· ru

sv
= p(ru)

q(sv)
= (pr)u

(qs)v
= pr

qs
· u

v
=

(
p
q
· r

s

)
· u

v
.

Distributive property

Observe that p
q
·
(

r
s

+ u
v

)
= p

q
· rv+su

sv
= prv+psu

q(sv)
= (prv+psu)q

q(sv)q
= (pr)(qv)+(qs)(pu)

(qs)(qv)
= pr

qs
+ pu

qv
=

p
q
· r

s
+ p

q
· u

v
.

Now we are left to identify a subset of F that is ring-isomorphic to R. We claim that the
subset is R̂ =

{
r
1

: r ∈ R
}
and the isomorphism is mapping φ : R→ R̂, de�ned by φ (r) = r

1
,

or all r ∈ R.
One-to-one

Let r, s ∈ R and suppose that φ (r) = φ (s). Then r
1

= s
1
, and so r · 1 = 1 · s. Thus r = s.

Onto

Let r
1
∈ R̂. Then φ (r) = r

1
.

Preservation of structure

Let r, s ∈ R. Then φ (r + s) = r+s
1

= r·1+1·s
1·1 = r

1
+ s

1
= φ (r) + φ (s), and φ (rs) = rs

1
= r·s

1·1 =
r
1
· s

1
= φ (r)φ (s). �


